EXPONENT RULES

Graphic Organizer

Name	Rule	Examples
ADDING & SUBTRACTING MONOMIALS	(DO NOT CHANGE common variables and exponents!)	1. $9x^2y - 10x^2y =$ 2. Subtract $6w$ from $8w$.
PRODUCT RULE	$x^a \cdot x^b =$	1. $h^2 \cdot h^6 =$ 2. $(-2a^2b) \cdot (7a^3b) =$
POWER RULE	$(x^a)^b =$	1. $(x^2)^3 =$ 2. $(-2m^5)^2 \cdot m^3 =$
QUOTIENT RULE	$\frac{x^a}{x^b} =$	1. $\frac{27x^5}{42x} =$ 2. $\frac{(y^2)^2}{y^4} =$
NEGATIVE EXPONENT RULE	$x^{-a} =$	1. $-5x^{-2} =$ 2. $\frac{4k^2}{8k^5} =$
ZERO EXPONENT RULE	$x^{0} =$	1. $7x^0 =$ 2. $\frac{(w^4)^2}{w^8} =$

Name: _____

Unit 6: Exponents & Exponential Functions

Date: _____ Bell: ____

Homework 5: Monomials (All Operations)

$1. 3a^3b^2 - 5a^3b^2$	2. $5xy - 2x^2y + 2xy$	3. Subtract -2w from -6w
$a^4 \cdot a^3$	5. $(-x^5)^2$	6. $\frac{k^9}{k^5}$
		, v
$-5x^3 \cdot (-3x^4)$	8. $(-2x^2y)^2 \cdot (-3xy^3)$	9. $2a^{-5}b^6 \cdot 5a^2b^2$
0. (-4y ⁴) ²	11. $(a^2bc^3)^4 \cdot (b^2c)^3$	12. (6cd ⁻¹) ⁻³
.3. $(4a)^{-3} \cdot a^{-4}$	14. $(3xy)^2 \cdot (-4x^3y^2)^3$	15. $(4a^{-1}b^5c^{-3})^3$
(1 <i>u)</i> · <i>u</i>		- ()

16.
$$\frac{9d^8}{3d^{10}}$$

17.
$$\frac{6a^5b^2}{4ab^3}$$

18.
$$\frac{32x^3y^2z^5}{-8xyz^2}$$

19.
$$\frac{(2y^5)^4}{10y^{15}}$$

$$20. \left(\frac{3x^5y^3}{x^3y^6} \right)$$

21.
$$\frac{(-6a^5b)^2}{12a^7b} - 8a^3b$$