| Name: | Date: | | | | | | |-------------------------------|--|--|--|--|--|--| | Topic: | Class: | | | | | | | Main Ideas/Questions | Notes/Examples | | | | | | | Standard
Form | Standard Form of a Quadratic Equation: | | | | | | | araph | When graphed, a quadratic equation creates a U-shaped curve called a | | | | | | | Types of
Parabolas | Use your graphing calculator to sketch the following: $y = x^2 + 2x - 5$ $y = -x^2 + 3x + 7$ $ f'a' \text{ is, then the parabola opens, like a smile. } \bigcirc$ $ f'a' \text{ is, then the parabola opens, like a frown. } \bigcirc$ | | | | | | | talements | Formula for the axis of symmetry: | | | | | | | VERTEX | When the vertex is the <u>lowest point</u>, it is called a When the vertex is the <u>highest point</u>, it is called a | | | | | | | EXAMPLE | Find the axis of symmetry and vertex, then sketch each parabola. | | | | | | | 1. $y = x^2 + 8x + 15$ | Axis of Symmetry: Vertex: Sketch: | | | | | | | 2. $y = -x^2 + 10x - 23$ | Axis of Symmetry: | Vertex: | Sketch: | | |----------------------------------|-------------------|---------|---------|--| | | | | | | | | | | | | | $3. y = 3x^2 - 12x + 5$ | Axis of Symmetry: | Vertex: | Sketch: | | | | | | | | | | | | | | | 4. $y = 4x^2 + 8x - 1$ | Axis of Symmetry: | Vertex: | Sketch: | | | | | | | | | | | | | | | 5. $y = -x^2 - 4x - 2$ | Axis of Symmetry: | Vertex: | Sketch: | | | | | | | | | | | | | | | 6. $y = -3x^2 - 24x - 42$ | Axis of Symmetry: | Vertex: | Sketch: | | | | | | | | | | | | | | | 7. $y = -x^2 + 4x$ | Axis of Symmetry: | Vertex: | Sketch: | | | | | | | | | | | | | | | 8. $y = x^2 - 3$ | Axis of Symmetry: | Vertex: | Sketch: | | | | | | | | | | | | | | | 9. $y = -2x^2 + 8$ | Axis of Symmetry: | Vertex: | Sketch: | | | | | | | | | | | | | | | | Î. | | | | | Name: | | | Date: | | | | | | |-------------------------------------|--|---|--------|---------------------------------|--|--|--|--| | Topic: | | | Class: | | | | | | | Main Ideas/Questions Notes/Examples | | | | | | | | | | | Find the axis of symme | netry. | | | | | | | | Steps to Graph a | 2 Find the vertex. | Find the vertex . | | | | | | | | QUADRATIC
EQUATION | Put the vertex in the minusing your calculator. | Put the vertex in the middle row of the table. Fill in a table of values using your calculator. | | | | | | | | | Plot the points and cor | Plot the points and connect them into a smooth parabola! | | | | | | | | EXAMPLES | Directions: Graph each quo of symmetry, vertex, domain | | | sing a table. Identify the axis | | | | | | | 1. $y = x^2$ Axis of Symmetry: Vertex: Domain: Range: 2. $y = x^2 + 2x - 1$ Axis of Symmetry: Vertex: Domain: Range: 3. $y = -x^2 - 8x - 17$ | - X | | | | | | | | | 3. $y = -x - 0x - 17$ | x | · | | | | | | | | Axis of Symmetry: | - | | * | | | | | | | Vertex: | | | | | | | | | | Domain: | | | | | | | | | Name: | Date: | |--------|--------| | Topic: | Class: | | ivanie. | | Class: | | | | | |--|------------------------------|---------------------------------------|-------------|--|--|--| | Topic: | | | | | | | | Main Ideas/Questions | Notes/Examples | | | | | | | QUADRATIC ROOTS | | | | | | | | also called | | | | | | | | | 2 SOLUTIONS | 1 SOLUTION | NO SOLUTION | | | | | NUMBER OF SOLUTIONS | ← | ← | ← | | | | | EXAMPLES Find the solutions of the following quadratic equations by graphing. | 1. $y = x^2 + 4x - 5$ | | | | | | | Solutions:
1 | | | | | | | | 2 | 2. $y = x^2 - 2x + 1$ | $\begin{bmatrix} x & y \end{bmatrix}$ | | | | | **3.** $$y = -x^2 + 2x - 3$$ ## **Solutions:** 4. _____ 5. _____ 6. _____ | 4 | 1, | _ | r^2 | _ | 1 | N | r | + | 1 | 6 | |----|----|---|-------|---|----|---|---|--------|----|---| | т. | v | _ | л | _ | т, | v | л | \top | т, | v | | x | у | |---|---| | | | | | | | | | | | | | | | **5.** $$y = -x^2 + 9$$ | x | y | |---|---| **6.** $$y = -3x^2 + 6x$$ ## THE DISCRIMINANT Formula: - \succ If d > 0, then there are ____ solutions. - \succ If d = 0, then there are ____ solutions. - \succ If d < 0, then there are ____ solutions. ## **EXAMPLES** Use the discriminant to determine the number of solutions. - **7.** $y = x^2 + 5x + 4$ - ☐ 2 solutions - ions - □ 1 solution□ 0 solutions - **8.** $y = x^2 3x + 10$ - 2 solutions - □ 1 solution□ 0 solutions - **9.** $y = x^2 + 10x + 25$ - 2 solutions1 solution O solutions - **10.** $y = 2x^2 4x 3$ - 2 solutions - □ 1 solution□ 0 solutions - **11.** $y = 4x^2 12x + 9$ - ☐ 2 solutions - tions - □ 1 solution□ 0 solutions - **12.** $y = -3x^2 + 5x 8$ - ☐ 2 solutions - ☐ 1 solution - O solutions