PreCalc

2.3 Notes

2.3 Polynomial and Synthetic Division

Long Division of Numbers

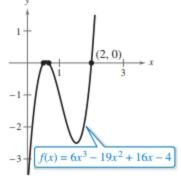
Use long division to divide 277 by 12. Then, identify the dividend, divisor, quotient, and remainder.

Long division leads to the result: $\frac{dividend}{divisor} = quotient + \frac{remainder}{divisor}$

Write the problem above in this form:

Multiplying through by the divisor yields the result: *dividend* = (*divisor*)(*quotient*) + *remainder*

Multiply 12 through. This can be used as a means to check your work.


Long Division of Polynomials

Learning Target: I can divide polynomials using long division.

Suppose you are given the graph of $f(x) = 6x^3 - 19x^2 + 16x - 4$. Notice that a zero of f occurs at x = 2. Because x = 2 is a zero of f, you know that _____ is factor of f(x). This means that there exists some 2nd degree polynomial q(x) such that:

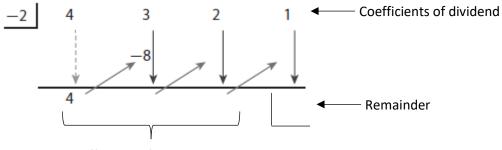
$$f(x) = (x - 2) \cdot q(x)$$

To find q(x), we can use **long division**!

Example 1. Use long division to divide the polynomials.

A) $(4x^3 + 2x^2 + 3x + 5) \div (x + 1)$

B) $(x^3 - 1) \div (x - 1)$


C) $(-5x^2 - 2 + 3x + 2x^4 + 4x^3) \div (2x - 3 + x^2)$

Using Synthetic Division

Learning Target: I can use synthetic division to divide polynomials by divisors of the form x - k.

There is a nice shortcut for long division of polynomials by divisors of the form x - k. The following is an example of **synthetic division**.

Use synthetic division to divide $4x^3 + 3x^2 + 2x + 1$ by x + 2.

Coefficients of the quotient

Example 2. Use Synthetic Division to divide the polynomials.

A) $(x^4 - 10x^2 - 2x + 4) \div (x + 3)$

B) $(5x^3 + 8x^2 - x + 6) \div (x - 2)$

Using the Remainder Theorem and Factor Theorem

Learning Target: I can apply the Remainder Theorem and Factor Theorem.

The Remainder Theorem If a polynomial f(x) is divided by x - k, then the remainder is r = f(k).

Example 3. Use the remainder theorem to evaluate $f(x) = 3x^3 + 8x^2 + 5x - 7$ given the input.

A) x = -2

B) *g*(−1)

The Factor Theorem

A polynomial f(x) has a factor (x - k) if and only if f(k) = 0.

Example 4. Verify the given factors of f(x). Then, find the remaining factors of f(x) to write f(x) in factored form. Finally, give all real zeros of f.

A) $f(x) = 2x^4 + 7x^3 - 4x^2 - 27x - 18; (x - 2), (x + 3)$

B) $f(x) = x^3 - 19x - 30; (x + 3)$