## Advanced Math

## Section 3.3 Notes Rational Root Theorem

Name:

**Learning Target:** *©* Finding the zeros of a polynomial using the Rational Root Theorem.

| Warm Un: Use synthetic division to see if c is                        | a zero of $P(\mathbf{r})$                                     |
|-----------------------------------------------------------------------|---------------------------------------------------------------|
| $= P(x) + 4x^3 + 10x^2 + 0x + 0 = 1$                                  | $h = D(x) = x^4 - 2x^2 = 100x = 75$                           |
| <b>a.</b> $P(x) = 4x^3 - 10x^2 - 8x + 6$ , $c = 1$                    | <b>b</b> . $P(x) = x^2 - 2x^2 - 100x - 75$ , $c = 5$          |
|                                                                       |                                                               |
|                                                                       |                                                               |
|                                                                       |                                                               |
|                                                                       |                                                               |
| A polynomial function $P$ of degree $n$ has a most                    | zeros, including                                              |
| Rational Zero Theorem: We will do an actual e                         | xample to show this theorem!                                  |
| Given $P(x) = x^3 + 2x^2 - x - 2$                                     |                                                               |
| , , , , , , , , , , , , , , , , , , ,                                 | ,                                                             |
| p = (                                                                 | ) q = ()                                                      |
| Factors of <i>p</i> :                                                 | Factors of q:                                                 |
|                                                                       |                                                               |
| <ul> <li>Possible rational zeros is the following</li> </ul>          | ing list:                                                     |
| All possible                                                          | divided by                                                    |
| all possible                                                          |                                                               |
| Complete the list by putting                                          | z a sign in front of each possible rational zero              |
|                                                                       | ,                                                             |
| list of possible rational zeros from the example                      | above:                                                        |
|                                                                       |                                                               |
| Steps to Finding Real Zeros of $P(x)$ .                               |                                                               |
| L. Do                                                                 | using the list you just generated to find the rational zeros. |
| Once you get the quotient down to a                                   | to solve for the                                              |
|                                                                       | ,, to solve for the                                           |
| remaining rational zeros.                                             |                                                               |
| <ol> <li>If the quadratic cannot be factored, the remained</li> </ol> | aining zeros are either or                                    |
| and should b                                                          | e found using the                                             |
| 1 Once you find a rational zero, if what's left is                    | still greater than a quadratic you should always check for    |
| . The you had a futional zero, if what 3 left 13                      | Sent Breater than a quadratic, you should diways theter for   |
|                                                                       |                                                               |
| 5. The equals the                                                     | of zeros!!                                                    |

| Turn the page over to continue the example for the Rational Root Theorem |                                           |                   |
|--------------------------------------------------------------------------|-------------------------------------------|-------------------|
| <b>Example 1:</b> Given $P(x) = x^3 + 2x^2 - x - 2$                      | Degree =                                  | Number of Zeros = |
| [This was copied for you from the previous page!]                        |                                           |                   |
|                                                                          | <i>p</i> = <b>2</b>                       | q = <b>1</b>      |
|                                                                          | Factors of <i>p</i> : <b>1</b> , <b>2</b> | Factors of q: 1   |

Possible rational zeros is the list of all possible factors of p divided by all possible factors of q. Put a  $\pm$  sign in front of each possible rational zero!

List of possible rational zeros:  $\pm 1$ ,  $\pm 2$ 

Start the synthetic division with +1

What are the rational zeros of P(x)?\_\_\_\_\_

**Example 2:** Given  $P(x) = x^3 + 2x^2 - 5x - 6$ 

| Degree =              | Number of Zeros = |  |  |
|-----------------------|-------------------|--|--|
| <i>p</i> =            | <i>q</i> =        |  |  |
| Factors of <i>p</i> : | Factors of q:     |  |  |

Possible rational zeros is the list of all possible factors of p divided by all possible factors of q. Put a  $\pm$  sign in front of each possible rational zero!

List of possible rational zeros:

Start the synthetic division with +1

| <b>Example 3:</b> Given $P(x) = x^4 + 4x^3 - x^2 - 16x - 12$ | Degree =              | Number of Zeros = |
|--------------------------------------------------------------|-----------------------|-------------------|
|                                                              |                       |                   |
|                                                              | <i>p</i> =            | <i>q</i> =        |
|                                                              | Factors of <i>p</i> : | Factors of q:     |

Possible rational zeros is the list of all possible factors of p divided by all possible factors of q. Put a  $\pm$  sign in front of each possible rational zero!

List of possible rational zeros:

Start the synthetic division with +1

What are the rational zeros of P(x)?\_\_\_\_\_

List of possible rational zeros:

Start the synthetic division with +1



| Advand    | ed Math                                                | Section 3.3 HW<br>Rational Root Theorem           | Name:                        |                                            |
|-----------|--------------------------------------------------------|---------------------------------------------------|------------------------------|--------------------------------------------|
| 1.        | Given $P(x) = x^3 + 3x^2$                              | $x^2 - 6x - 8$                                    | Degree =                     | Number of Zeros =                          |
|           |                                                        |                                                   | <i>p</i> =                   | <i>q</i> =                                 |
|           |                                                        |                                                   | Factors of p:                | Factors of q:                              |
|           | Possible rational zeros i<br>in front of each possible | s the list of all possible fa<br>e rational zero! | ectors of $p$ divided by all | possible factors of $q$ . Put a $\pm$ sign |
| List of p | oossible rational zeros:                               |                                                   |                              |                                            |
| Start th  | e synthetic division with                              | +1                                                | What are the rational ze     | eros of <i>P</i> ( <i>x</i> )?             |
|           |                                                        |                                                   |                              |                                            |
|           |                                                        |                                                   |                              |                                            |
|           |                                                        |                                                   |                              |                                            |
|           |                                                        |                                                   |                              |                                            |

| 2. | Given $P(x) = x^3 - 3x - 2$                                                               | Degree = Nu                               | imber of Zeros =                         |
|----|-------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------|
|    |                                                                                           | <i>p</i> =                                | <i>q</i> =                               |
|    |                                                                                           | Factors of p:                             | Factors of q:                            |
|    | Possible rational zeros is the list of all po<br>in front of each possible rational zero! | ossible factors of $p$ divided by all pos | ssible factors of $q$ . Put a $\pm$ sign |

List of possible rational zeros:

Start the synthetic division with +1**Don't forget to put a zero where**  $x^2$  **belongs**!

| 3.        | Given $P(x) = 2x^3 + 9x^2 - 2x - 9$                                                               | Degree =                     | Number of Zeros =                          |
|-----------|---------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------|
|           |                                                                                                   | <i>p</i> =                   | <i>q</i> =                                 |
|           |                                                                                                   | Factors of p:                | Factors of q:                              |
|           | Possible rational zeros is the list of all possible f<br>in front of each possible rational zero! | actors of $p$ divided by all | possible factors of $q$ . Put a $\pm$ sign |
| List of p | possible rational zeros:                                                                          |                              |                                            |
| Start th  | he synthetic division with $+1$                                                                   | What are the rational ze     | eros of <i>P</i> ( <i>x</i> )?             |
|           |                                                                                                   |                              |                                            |
|           |                                                                                                   |                              |                                            |
|           |                                                                                                   |                              |                                            |
|           |                                                                                                   |                              |                                            |
|           |                                                                                                   |                              |                                            |
| 4.        | Given $P(x) = 2x^4 + 3x^3 - 4x^2 - 3x + 2$                                                        | Degree =                     | Number of Zeros =                          |
|           |                                                                                                   | <i>p</i> =                   | <i>q</i> =                                 |
|           |                                                                                                   | Factors of p:                | Factors of q:                              |
|           | Possible rational zeros is the list of all possible f<br>in front of each possible rational zero! | actors of $p$ divided by all | possible factors of $q$ . Put a $\pm$ sign |
| List of p | possible rational zeros:                                                                          |                              |                                            |

Start the synthetic division with +1

| 5.                  | Given $P(x) = x^3 - 19x - 30$                                                                  | Degree =                                | Number of Zeros =                          |
|---------------------|------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------|
|                     |                                                                                                | <i>p</i> =                              | <i>q</i> =                                 |
|                     |                                                                                                | Factors of <i>p</i> :                   | Factors of q:                              |
|                     | Possible rational zeros is the list of all possible f in front of each possible rational zero! | actors of $p$ divided by all $ $        | possible factors of $q$ . Put a $\pm$ sign |
| List of p           | oossible rational zeros:                                                                       |                                         |                                            |
| Start th<br>Don't f | e synthetic division with $+1$<br>orget to put a zero where $x^2$ belongs!                     | What are the rational zeros of $P(x)$ ? |                                            |
|                     |                                                                                                |                                         |                                            |
|                     |                                                                                                |                                         |                                            |
|                     |                                                                                                |                                         |                                            |
| 6.                  | Given $P(x) = x^4 + 2x^3 - 3x^2 - 8x - 4$                                                      | Degree =                                | Number of Zeros =                          |
|                     |                                                                                                | <i>p</i> =                              | <i>q</i> =                                 |
|                     |                                                                                                | Factors of p:                           | Factors of q:                              |
|                     | Possible rational zeros is the list of all possible f in front of each possible rational zero! | actors of $p$ divided by all $ $        | possible factors of $q$ . Put a $\pm$ sign |
| List of p           | oossible rational zeros:                                                                       |                                         |                                            |
| Start th<br>Don't f | e synthetic division with +1<br>orget to check for multiplicities!                             | What are the rational ze                | ros of <i>P</i> ( <i>x</i> )?              |
|                     |                                                                                                |                                         |                                            |
|                     |                                                                                                |                                         |                                            |
|                     |                                                                                                |                                         |                                            |
|                     |                                                                                                |                                         |                                            |
|                     |                                                                                                |                                         |                                            |
|                     |                                                                                                |                                         |                                            |
|                     |                                                                                                |                                         |                                            |

 Ex 1:
 1, -1, -2
 Ex 2:
 -1, -3, 2
 Ex 3:
 -1, 2, -2, -3
 Ex 4:
 -1, -3,  $-\frac{1}{2}$  

 1.
 -1, 2, -4
 2.
 -1
 multiplicity 2, 2
 3.
 1, -1,  $-\frac{9}{2}$  

 4.
 1, -1, -2,  $\frac{1}{2}$  5.
 -2, -3, 5
 6.
 -1
 multiplicity 2, 2, -2