| Name: | | | Date: | | | | |---|--|---------------------|----------------------|-----------------------------|--|--| | Name: | | | | Date: | | | | Topic: | Class: | | | | | | | Main Ideas/Questions | Notes/Examples | | | | | | | | Perfect Squares: | | | | | | | WARM-UP | Perfect Cubes: | | | | | | | List the perfect squares, cubes, and fourths. | Perfect Fourths: | | | | | | | N™ ROOTS | Definition: x is the n th root of a real number a if Examples: | | | | | | | M KOO12 | | | | | | | | | • and are square roots of 81 because and | | | | | | | | • is the cube root of -8 because | | | | | | | | and are fourth roots of 256 because and | | | | | | | RADICAL | The n^{th} root of a real number, a , can be written as the radical expression $\sqrt[n]{a}$ | | | | | | | Expression | | | | | | | | | V | | | | | | | | If there is no index , it is assumed that | | | | | | | | Number of Roots: | | | | | | | | Index | Radicand | Type of Roots | # of Roots | | | | | Even | Positive | | | | | | | Odd | Positive | | | | | | | Odd | Negative | | | | | | | ★ Even Negative | | | | | | | | • If a radicand has more than one $n^{\rm th}$ root, the radical sign indicates only the principal , or positive , root. | | | | | | | | Find each value. | | | | | | | EVALUATING
Radicals | √16 = | $-\sqrt{121} =$ | $\sqrt{289} =$ | $-\sqrt{\frac{4}{25}}=$ | | | | | 3√8 = | $\sqrt[3]{343} =$ | ³ √-125 = | $\sqrt[3]{-\frac{1}{27}} =$ | | | | | $-\sqrt[4]{1} =$ | $\sqrt[4]{2,401} =$ | $-\sqrt[4]{4,096} =$ | $\sqrt[4]{\frac{81}{16}} =$ | | | | SIMPLIFYING
Radicals | 1. √117 | | 2. 4√320 | | |-------------------------|--|--------------|---------------------------------|-----------------------| | | 3. 2 ³ √48 | 4 | I. 3∛108 | | | | 5. ³ √−250 | 6 | . 6∛–2 | | | | 7. 3∜162 | 8 | 3. 5∜2,592 | | | | | | Т | | | | Square Roots | Cube Ro | oots | 4 th Roots | | 10 A. A +0 | Exponents must be | Exponents r | nust be | Exponents must be | | Radicals with | multiples of! | multiples of | f! | multiples of! | | VARIABLES | 9. $\sqrt{32x^4y^9}$ | 1 | 0. $\sqrt{324a^3b^7}$ | | | | 11. $\sqrt[3]{216m^3n^6}$ | 1 | 2. $\sqrt[3]{56r^8s^4}$ | | | | 13. $\sqrt[3]{-64x^{10}y^{21}}$ | 1 | 4. $\sqrt[3]{-81p^2q^1}$ | 2 | | | 15. $\sqrt[4]{w^4v^{17}}$ | 1 | 6. $\sqrt[4]{48m^8n^3}$ | | | Name: | Date: | |--------|--------| | Topic: | Class: | | Topic: | Class: | | | | |--|---|---|---|--| | Main Ideas/Questions | Notes/Examples | | | | | DATIONAL | Expressions with rational exponents can be rewritten as radicals using the following rules: | | | | | RATIONAL | Exponential Form | Meaning | Radical Form | | | EXPONENTS | $a^{\frac{1}{n}}$ | The n^{th} root of a | $a^{\frac{1}{n}} =$ | | | | $a^{\frac{m}{n}}$ | The n^{th} root of a , raised to the m^{th} power | $a^{\frac{m}{n}} =$ | | | O t | Directions: Write e | ach expression in radical fo | rm. Simplify if needed. | | | Converting EXPONENTIAL TO RADICAL FORM | 1. $x^{\frac{1}{4}}$ | 2. $24^{\frac{1}{3}}$ | 3. $(15x)^{\frac{1}{2}}$ | | | | 4. $7^{\frac{2}{3}}$ | 5. $k^{\frac{7}{2}}$ | 6. $3^{\frac{5}{4}}$ | | | | 7. $(ab)^{\frac{3}{4}}$ | 8. $(-6x)^{\frac{2}{3}}$ | 9. $7(12w)^{\frac{1}{2}}$ | | | | | ach expression in exponent | | | | Converting RADICAL TO EXPONENTIAL FORM | 10. ³ √16 | 11. \sqrt{xy} | 12. $\sqrt[4]{8w^2}$ | | | | 13. ³ √1 1 ² | 14. $\sqrt[4]{k^{10}}$ | $15. \left(\sqrt{3m}\right)^7$ | | | | 16. $(\sqrt[4]{-2a})^5$ | 17. $\sqrt{10^5 a^3 b^8}$ | 18. $\sqrt[8]{9x^2y^{12}}$ | | | | | | © Ging Wilson (All Things Algebra® 11 C) 2015.2 | | | Name: | Date: | |--------|--------| | Topic: | Class: | | Topic: | | | Class: | | |----------------------|----------------|--|---|--| | Main Ideas/Questions | Notes/Examples | | | | | | 1 | SIMPLIFY all radicals. | | | | ADDING & | 2 | Identify radicals with the SAME Only these can be combined! | INDEX and SAME RADICAND. | | | SUBTRACTING | 3 | For common radicals, add/subtract the coefficients and KEEP THE COMMON RADICAL. | | | | Radicals | 1. 3 | √27 – 2√12 | 2. $3\sqrt[3]{54} - 2\sqrt[3]{2} + 7\sqrt[3]{-16}$ | 3. 75 | $\sqrt[4]{48} - 2\sqrt[4]{3} + 3\sqrt[3]{72}$ | 4. $10\sqrt{28} + \sqrt[3]{-56} - 4\sqrt{175}$ | | | | | | | | | | | | | | | | | | 3 3 3 | | | | 5. √9 | $98x^4y^2 - 3x^2y\sqrt{2}$ | 6. $\sqrt[3]{-40a^7} + 2a^2 \cdot \sqrt[3]{135a^4}$ | | | | | | | | | | | | | | | | 1 | Adultin I and a first and a line and a first fir | | | | MULTIPLYING | 1 | | | | | Radicals | 2 | SIMPLIFY the resulting radical. $\sqrt{27} \cdot \sqrt{5}$ 8. $3\sqrt{10} \cdot -2\sqrt{18}$ | | | | | 1. 12 | 27 - 43 | 6. 3\(\frac{10}{2}\)\(| | | | | | | | | | • • • | 85 -37 | 10 245 45 | | | | 9. 23 | ³ √9 · 5 ³ √−24 | 10. $-3\sqrt[4]{64} \cdot -\sqrt[4]{8}$ | | | | | | | | | | | | | |