Name:	Class:
Торіс:	Date:

Main Ideas/Questions	Notes				
Angles in Standard Form	 An angle on the coordinate plane is in standard form when the vertex is on the origin and one ray lies on the positive x-axis. 				
90°	The ray on the <i>x</i> -axis is called the				
$\checkmark \qquad \theta$	The other ray is called the				
	Counterclockwise rotations result in angle measures.				
	Clockwise rotations result in angle measures.				
↓ 270°	One full revolution =				
Drawing Angles	Directions: Sketch an angle with the given measure in standard position.				
	1. 75° \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	$ \begin{array}{c} y \\ y \\ \hline \end{array} \\ x \\ \end{array} \qquad \begin{array}{c} \textbf{3. 430}^{\circ} \\ y \\ \hline \end{array} \\ x \\ \end{array} \qquad \begin{array}{c} y \\ \hline \end{array} \\ x \\ \end{array} \\ x \\ \end{array} $			
Radians vs.	A radian is a unit of angle measure based on arc length.				
Degrees	One radian is defined as the measure of the angle formed when the radius is equivalent to the length of the intercepted arc				
rr	Recall that the circumference of a circle is $2r\pi$, therefore:				
θ	360° =; 180° =				
$\theta = 1$ radian	Converting Degrees → Radians	Converting Radians \rightarrow Degrees			
	Radians = Degrees $\cdot \left(\frac{\pi \text{ radians}}{180}\right)$	Degrees = Radians $\left(\frac{180}{\pi \text{ radians}}\right)$			
Dearees →	Directions: Convert each measure to radians.				
Radians	4. 30° 5. 150°	6. -220°			
Dadiana	Directions: Convert each measure to dearees.				
Ruuluins → Degrees	7. $\frac{4\pi}{2}$ 8. $-\frac{5\pi}{2}$	9. $\frac{7\pi}{.}$			
209.000	3 36	4			

Coterminal Angles	Angles in standard position with the same terminal side are coterminal angles . Give two coterminal angles for each given angle, one positive and one negative:				
y $90^{\circ}\left(\frac{\pi}{2}\right)$	10. 65° 11. 540				
$-270^{\circ}\left(-\frac{3\pi}{2}\right)$	12. $\frac{13\pi}{18}$ 13. $\frac{14\pi}{9}$				
Reference Angles	For an angle θ in standard form, the reference angle is the positive acute angle form by the terminal side and the <i>x</i> -axis. Sketch and find the reference angles for each angle:				
Reference Angle	14. 225° y	15. -310°	16. $\frac{2\pi}{3}$ y		
	Let θ be an angle in stand	dard form and $P(x, y)$ be a	↓ point on the terminal side		
Trig Functions	of θ . The distance from <i>P</i> to the the origin, <i>r</i> , can be found using the formula:				
$\begin{array}{c} y \\ y \\ \end{array} \xrightarrow{r} \\ x \\ \end{array} \xrightarrow{\theta} \\ x \\ \end{array} x$	$sin \theta =$	$\cos \theta =$	$tan \theta =$		
Ļ	$csc \theta =$	sec θ =	$\cot \theta =$		
$\leftarrow \qquad \qquad$	17. <i>P</i> (5, -2) is a point on exact values of the tri	the terminal side of θ in st gonometric functions of θ :	andard form. Find the		
	$sin \theta =$	$\cos \theta =$	$tan \theta =$		
	$csc \theta =$	sec θ =	$\cot \theta =$		