Lesson 2: I Rule!

Ready, Set, Go

Rewrite each expression as the product of two binomials.

Each expression involves two multiplication problems separated by a + or - sign. Each multiplication problem contains a matching binomial factor that can be factored out so that the expression becomes a product of two binomials.

Example:

- 3x(4x+1) + 2(4x+1) = (4x+1)(3x+2)
- Factor out (4x + 1) and write the numbers that remain (3x + 2).
- Rewrite as (4x + 1)(3x + 2).
- 1. 2x(5x+3)+7(5x+3)
- **2.** 8x(x+1) + 2(x+1)
- 3. 6x(x-10)-1(x-10)
- **4.** 1x(3x+4)+5(3x+4)
- 5. 3x(8x+3)-4(8x+3)
- **6.** 5x(2x+6)+2(2x+6)
- 7. 7x(-5x+2)-13(-5x+2)

8.
$$-4x(12x+3)+3(12x+3)$$

Set

In each set of three functions, one will be linear, one will be exponential, and one will be a quadratic function. Explain the nature of change for the function and find an explicit and recursive equation for each.

9.	a.	x	f(x)	Type of function and nature of change:
		6	64	Explicit equation:
		7	128	
		8	256	Recursive equation:
		9	512	
		10	1,024	

b.	x	f(x)	Type of function and nature of change:
	6	36	Explicit equation:
	7	49	
	8	64	Recursive equation:
	9	81	
	10	100	
		l	

c.	x	f(x)	
	6	11	
	7	13	
	8	15	
	9	17	
	10	19	

Type of function and nature of change:

Recursive equation:

Explicit equation:

10. a. x f(x) $\begin{array}{c|cccc}
 & x & f(x) \\
 & -2 & -17 \\
 & -1 & -12 \\
 & 0 & -7 \\
 & 1 & -2 \\
 & 2 & 3
\end{array}$

Type of function and nature of change:

Recursive equation:

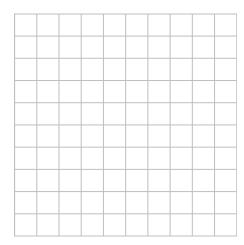
Explicit equation:

b. x f(x) $\begin{array}{c|cccc}
 & x & f(x) \\
\hline
 & -2 & \frac{1}{25} \\
 & -1 & \frac{1}{5} \\
 & 0 & 1 \\
 & 1 & 5 \\
 & 2 & 25 \\
\end{array}$

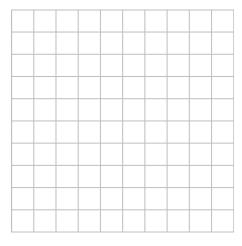
Type of function and nature of change:

Explicit equation:

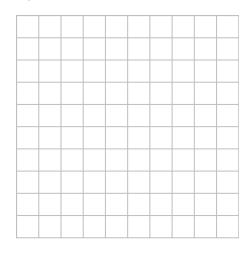
Recursive equation:

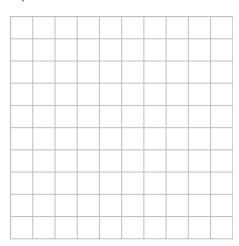

c.	x	$\int f(x)$
	-2	9
	-1	6
	0	5
	1	6
	2	9
		I

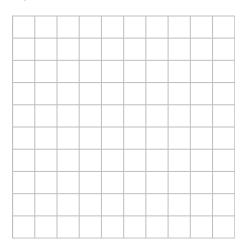
Type of function and nature of change:

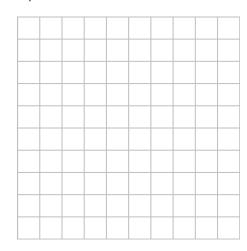

Explicit equation:

Recursive equation:


- **11.** Graph the functions from the tables in problems 9 and 10. Add any additional characteristics you notice from the graph. Place the axes so that you can show all 5 points. Identify your scale. Write the explicit equation above the graph.
 - **a.** Equation:


b. Equation:


c. Equation:


d. Equation:

e. Equation:

f. Equation:

Go

Find the greatest common factor (GCF) for the given values.

- **12.** 15 and 25
- $\mathbf{13.}\ \ 12\ \mathsf{and}\ 32$

- $\mathbf{14.}\ \ 18\ \mathsf{and}\ 54$
- **15.** 14 and 21
- **16.** 6, 18, and -12
- **17.** 45 and 36
- **18.** 22, 33,and 99
- **19.** 16, 24, and 36
- **20.** 25 and 36