DATE

PERIOD

Lesson 2: Transformers: More Than Meets the y's Solidify Understanding

Jump Start

Without using technology, match each of the equations with the graph of the function. Be careful; there are more graphs than equations!

Learning Focus

Write equations for functions that are transformations of $f(x) = x^2$. Find efficient methods for graphing transformations of $f(x) = x^2$. What happens to the graph of $f(x) = x^2$ when more than one transformation is applied?

DATE

PERIOD

Open Up the Math Launch, Explore, Discuss

In the previous lesson, you learned about transformations of the graph of $f(x) = x^2$. In this lesson, you will be writing equations and graphing functions that have more than one transformation. It will be a lot easier if you know a few points on $f(x) = x^2$ that we can use for comparisons. We'll call them anchor points.

1. Identify each anchor point shown on the graph of $f\left(x
ight)=x^{2}.$

Anchor points:

- Vertex (______)
- (1, _____) and (-1, _____)
 (2, _____) and (-2, _____)
- (3,_____) and (-3,____)
- Line of symmetry: x = _____

Write the equation for each problem below. Use a second representation to check your equation.

2. The area of a square with side length x, where the side length is decreased by 3, the area is multiplied by 2, and then 4 square units are added to the area.

4.	x	f(x)	
	-4	7	
	-3	2	
	-2	-1	
	-1	-2	
	0	-1	
	1	2	
	2	7	
	3	14	
	4	23	

Graph each equation without using technology. Be sure to have the exact vertex and at least two correct points on either side of the line of symmetry.

6.
$$f(x) = -x^2 + 3$$

DATE

PERIOD

7.
$$g(x) = (x+2)^2 - 5$$

8. $h(x) = 3(x-1)^2 + 2$

					-						-		
	-	-	-	 -	-	-	-	-	_	-	-	-	-
		-		 -	-						-		
	-	-		 -	-		-			-	-		
	_	-		 -	-	 	-	-		-	-		
	-	-	-	 -	-	 	-	-		-	-		
	_	_		 _	-		_			_	_		
					-								

- **9.** Given: $f(x) = a(x-h)^2 + k$
 - **a.** What point is the vertex of the parabola?
 - **b.** What is the equation of the line of symmetry?
 - c. How can you tell if the parabola opens up or down?
 - **d.** How do you identify the vertical stretch?

	Ν	A	М	E
				_

DATE

PERIOD

10. Does it matter in which order the transformations are done? Explain why or why not.

Ready for More?

Think about applying the transformations to the parent function $f(x) = 2^x$.

- 1. What point makes sense to use as an anchor point on this function?
- **2.** What do you think is the equation of the function with a horizontal shift left 3?
- 3. How does the horizontal shift on $y = 2^x$ work like the horizontal shift on $y = x^2$?

Takeaways

Vertex form of a quadratic equation:

• Vertex:

• Opens upward:

• Line of symmetry:

• Opens downward:

• Vertical stretch:

Quick-graph method for graphing quadratics:

DATE

PERIOD

a.
$$y = (x - 4)^2 - 3$$

c. $y = 2(x+1)^2 - 5$

Vocabulary

• vertex form

Bold terms are new in this lesson.

Lesson Summary

In this lesson, we learned to graph quadratic functions that have a combination of transformations. We found that the vertex form of the equation of a quadratic function makes it easy to find the vertex and identify the transformations. We wrote equations in vertex form from graphs and tables,

Unit 7, Lesson 2

© 2021 Open Up Resources and Mathematics Vision Project

b.
$$y=-(x+2)^2+5$$

N	AI	N	E
		-	_

DATE

PERIOD

using our understanding of transformations and the features of parabolas.

Retrieval

The standard form for a quadratic equation is $y = ax^2 + bx + c$. In each of the following equations, identify the values for a, b, and c.

1.	$y = 3x^2 - 7x + 12$	2.	$f(x) = 9x^2 + 4x - 8$
	a =		a =
	b =		b =
	c =		<i>c</i> =
3.	$g(x) = 2x^2 + 11x + 15$	4.	$h(x) = -5x^2 + 41x + 36$
	a =		a =
	b =		b =
	<i>c</i> =		c =

PERIOD

NAME	DATE	
5. Use the table to identify the vertex, the	x	y
state the number of x -intercept(s) the	-4	9
the vertex will be a minimum or a	-3	2
maximum.	-2	-3
	-1	-6
	0	-7
	1	-6
	2	-3
a. Vertex:		

b. Line of symmetry: _____

c. *x*-int(s):_____

d. Minimum or maximum?