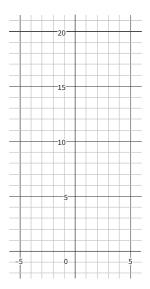
Lesson 1: Log Logic

Ready, Set, Go

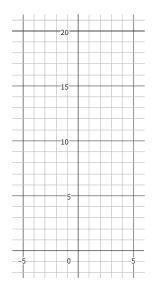
Ready

Graph each function over the domain $\{-4 \leq x \leq 4\}.$

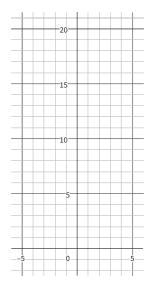
1.
$$y = 2^x$$



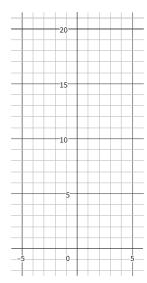
2.
$$y = 2 \cdot 2^x$$



3.
$$y = (\frac{1}{2})^x$$



4.
$$y = 2(\frac{1}{2})^x$$



 $\textbf{5.} \ \ \text{Compare problem 1 to problem 2. Multiplying by 2 should generate a vertical stretch of the graph, but the graph looks like it has been translated vertically. How do you explain that?}$

6. Compare problem 3 to problem 4. Is your explanation in problem 5 still valid for these two graphs? Explain.

Set

- **7.** Given that $f(x) = 3^x$, $f^{-1}(x) =$
- **8.** Given that $f(x) = 7^x$, $f^{-1}(x) =$
- **9.** Given that $f\left(x\right)=a^{x}$, $f^{-1}\left(x\right)=$
- **10.** Given that $f^{-1}(x) = \log_{10} x$, f(x) =
- **11.** Given that $f^{-1}\left(x
 ight)=\log_{27}x,f\left(x
 ight)=$

Given $f(x) = 5^x$. Use the table to fill in the missing values and evaluate the log expression.

x	$f\left(x ight) =5^{x}$
0	1
1	5
2	25
3	125
4	625
5	3,125

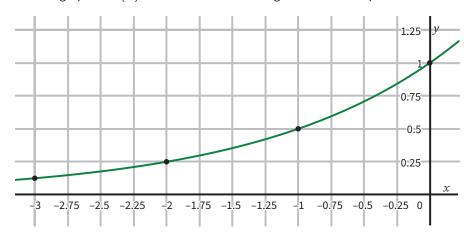
12.
$$f^{-1}(25) = \log_5$$
 _____ = ____.

13.
$$f^{-1}(3,125) = \log_5 \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

14.
$$f^{-1}(\underline{\hspace{1cm}}) = \log_5 \underline{\hspace{1cm}} = 1$$

Given $h\left(x\right)=2^{x}$ and $k\left(x\right)=h^{-1}\left(x\right)$.

Use the graph of $h\left(x\right)=2^{x}$ to find the missing value in each equation.



15.
$$h^{-1}(\underline{\hspace{1cm}}) = \log_2(\frac{1}{2}) = \underline{\hspace{1cm}}$$

16.
$$h^{-1}(1) = \log_2 \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

17.
$$h^{-1}(0.25) = \log_2 \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

18. Answer the question yes or no. If yes, give an example of the answer. If no, explain why not.

Does $\log_x 0$ have an answer?

Go

Apply the properties of exponents to find equivalent numerical expressions that no longer have exponents.

- **19.** 27⁰
- **20.** $11(-6)^0$
- **21.** -3^{-2}
- **22.** 4^{-3}
- 23. $\frac{9}{2^{-1}}$
- 24. $\frac{4^3}{8^0}$
- **25.** $3\left(\frac{29^3}{11^5}\right)^0$

- **26.** $\frac{3}{6^{-1}}$
- **27.** $\frac{32^{-1}}{4^{-1}}$