NAME DATE PERIOD

Lesson 3: Chopping Logs

Ready, Set, Go

Ready

Rewrite the following expressions with an exponent instead of a radical.

- 1. $\sqrt[5]{x}$
- **2.** $\sqrt[7]{s^2}$
- 3. $\sqrt[3]{w^8}$
- 4. $\sqrt[3]{8r^6}$
- 5. $\sqrt[5]{125m^5}$
- **6.** $\sqrt[3]{(8x)^2}$
- **7.** $\sqrt[3]{9b^8}$
- 8. $\sqrt{75x^6}$

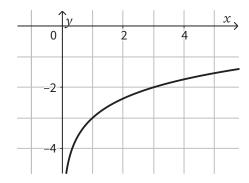
Rewrite with a fractional exponent. Then evaluate.

NAME DATE PERIOD

9.
$$\log_3 \sqrt[5]{3} =$$

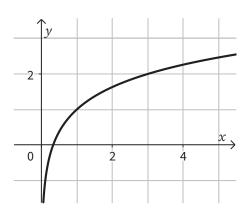
10.
$$\log_2 \sqrt[3]{4} =$$

11.
$$\log_7 \sqrt[5]{343} =$$


12.
$$\log_5 \sqrt[5]{3,125} =$$

Set

13. Given
$$f(x) = \log_3 \frac{x}{27}$$


Use the graph to write an equivalent function for f(x).

14. Given
$$g\left(x\right) = \log_3 3x$$

Use the graph to write an equivalent function for $g\left(x\right)$.

NAME DATE **PERIOD**

15. Given $h\left(x\right)=\log_{10}40x$, select ALL of the functions that are equivalent. For each function that you select, show why it is equivalent to h(x).

A.
$$a(x) = \log_{10} x + \log_{10} 5 + \log_{10} 8$$
 C. $c(x) = \frac{\log_{10} 80x}{\log_{10} 2}$

C.
$$c(x) = \frac{\log_{10} 80x}{\log_{10} 2}$$

B.
$$b(x) = \log_{10} x + \log_{10} 4 + 1$$

16. Given $g\left(x\right) = \log_5 3x + 2$, select ALL of the functions that are equivalent. For each function that you selected, explain why it is equivalent to g(x).

A.
$$a(x) = \log_5 125 + \log_5 25x$$

C.
$$c(x) = \log_5 9x - \log_5 3 + \log_5 \sqrt{625} + \log_5 1$$

B.
$$b(x) = \log_5 75x$$

D.
$$d(x) = \log_5 50 + \log_5 36x - \log_5 4 - \log_5 3 - \log_5 2$$

Convert to logarithmic form.

17.
$$2^9 = 512$$

18.
$$10^{-2} = 0.01$$

19.
$$\left(\frac{2}{3}\right)^{-1} = \frac{3}{2}$$

Unit 2, Lesson 3 - Ready, Set, Go

NAME DATE PERIOD

o<u>*</u>

Write in exponential form.

20.
$$\log_4 2 = \frac{1}{2}$$

21.
$$\log_{\frac{1}{3}} 3 = -1$$

22.
$$\log_{\frac{2}{5}} \frac{8}{125} = 3$$