Lesson 4: Log-Arithm-etic

Ready, Set, Go

Ready

1. Factor out the greatest common factor in the expression. Then simplify the numbers inside the parentheses.

Factor out the GCF	Factored Form	Simplified Expression
7+7 (0.675)		
19+19(0.33)		
38 - 38 (0.42)		
67 - 67 (0.92)		

2. Jaxon has invested \$500 in an excellent money market account that earns 20% per year. Given is a chart of his year-end balances that appeared on his investment statements.

Beginning Balance	End of year $\boldsymbol{1}$	$\operatorname{End}\operatorname{of}\operatorname{year}2$	End of year $\boldsymbol{3}$
\$500	\$600	\$720	\$864

Jaxon's money is growing exponentially, and he recalls from a previous math class that the formula for an exponential function is $y=ab^x$. He recalls that a=\$500 and x=# years. He thinks b should equal 20% (0.2), but that number isn't giving him the numbers on his bank statement. What number should he be using for b? Explain.

3. Jackie owes \$500 on a loan. She has agreed to pay the loan company 8% of the outstanding balance on the first day of each month. Given is a chart of the balances she owes after each payment.

Initial Amount Owed	Month 1	Month 2	Month 3
\$500	\$460	\$423.20	\$389.34

Jackie knows her loan balance is decreasing exponentially. She also recalls from a previous math class that the formula for an exponential function is $y=ab^x$. She replaces a with \$500 and lets x be the number of monthly payments. But when she uses 8%~(0.08) in the formula for b, it doesn't give her the correct balance for each month. What number should she be using for b? Explain.

Set

Use properties of logarithms to rewrite the indicated logarithms in terms of the given values, then find the indicated logarithm using the given approximate values.

Do not use a calculator to evaluate the logarithms.

Given:

 $\log 16 \approx 1.2$

 $\log 5\approx 0.7$

 $\log 8 \approx 0.9$

- **4.** Find $\log \frac{5}{8}$
- **5.** Find $\log 25$
- **6.** Find $\log \frac{1}{2}$
- **7.** Find log 80
- **8.** Find $\log \frac{1}{64}$

Given:

 $\log_3 2 pprox 0.6$

 $\log_3 5 \approx 1.5$

9. Find $\log_3 16$

- 10. Find $\log_3 108$
- 11. Find $\log_3 \frac{3}{50}$
- **12.** Find $\log_3 \frac{8}{15}$
- 13. Find $\log_3 486$
- **14.** Find $\log_3 18$
- **15.** Find $\log_3 120$
- **16.** Find $\log_3 \frac{32}{45}$

Go

Use your calculator and the definition of $\log x$ to find the value of x. (Round your answers to four decimals.)

- **17.** $\log x = -3$
- **18.** $\log x = 1$
- **19.** $\log x = 0$

20.
$$\log x = \frac{1}{2}$$

21.
$$\log x = 1.75$$

22.
$$\log x = -2.2$$

23.
$$\log x = 3.67$$

24.
$$\log x = \frac{3}{4}$$

25.
$$\log x = 6$$